O primeiro satélite para fins de Sensoriamento Remoto não tripulado foi o Landsat 1, lançado em julho de 1972, que inicialmente levou a bordo 2 tipos de sensores que imageavam uma faixa de 185 km em cada passagem: um sistema de varredura multiespectral com imageamento do terreno por linhas (line scanner), o Multiespectral Scanner Subsystem (MSS), e um sistema de varredura com imageamento instantâneo constituído por três câmeras de televisão, o Return Beam Vidicon (RBV). (NOVO, 1992, p. 111).
Como as primeiras imagens da terra a partir de uma plataforma digital foram tomadas por câmeras fotográficas, concebeu-se que o sistema sensor a ser transportado pelo satélite deveria ser capaz de produzir imagens instantâneas do terreno de forma semelhante aos sistemas fotográficos. Desta maneira, foi concebido o sistema RBV, que é um sistema semelhante a uma câmera de televisão e permite o registro instantâneo de uma certa área do terreno (cena). A energia proveniente de toda a cena impressiona a superfície fotossensível do tubo da câmera e, durante certo tempo, a entrada de energia é interrompida por um obturador, para que a imagem do terreno seja varrida por um feixe de elétrons. O sinal de vídeo pode então ser transmitido telemetricamente. (NOVO, 1992, p. 115).
Junto ao sistema RBV, que funciona como uma câmera de televisão, o satélite Landsat também levava a bordo o sistema MSS, que permite o imageamento de linhas do terreno numa faixa de 185 km, perpendiculares à órbita do satélite. A varredura do terreno é realizada com auxílio de um espelho que oscila perpendicularmente ao deslocamento do satélite. “Durante a oscilação do espelho, a imagem do terreno, ao longo da faixa, é focalizada sobre uma matriz de detetores.” (NOVO, 1992, p. 130) A dimensão de cada detector é responsável pelo seu campo de visada instantâneo e a energia registrada por cada detector é transformada em um sinal elétrico, que é transmitido para as estações em terra.
Lançado em janeiro de 1975, o Landsat 2 trazia a bordo os mesmos sensores e mantinha as mesmas características do seu antecessor, também com resolução espacial do sensor MSS de 80 metros. Seu sucessor, o Landsat 3 foi lançado em março de 1978 e foi o primeiro a ter a bordo o sensor Thematic Mapper (TM), contudo trazia as mesmas características orbitais dos seus antecessores: altitude de 920 km, inclinação de 99,4º, período de 103 minutos e resolução temporal de 18 dias. É importante frisar que o ângulo de inclinação do satélite em relação ao plano do Equador garantia a ele uma órbita síncrona ao Sol, permitindo que os dados fossem coletados em condições semelhantes de iluminação, estando então mais susceptível a mudanças provocadas por condições atmosféricas.
O sensor TM opera em 7 canais, enquanto seu antecessor operava em 4 canais, trata-se de um sistema de varredura multiespectral em que cada pixel da imagem irá produzir um sinal proporcional à sua energia radiante, que será transformado em sinal digital. Este sistema foi criado a fim de se obter uma maior resolução da imagem e desta forma alcançar níveis de discriminação entre objetos também maiores. O sistema de varredura multiespectral possui maior fidelidade geométrica e melhor precisão radiométrica em relação ao sensor MSS.
Os satélites Landsat 4 e 5 inauguram a segunda geração de satélites da série e, por apresentarem órbitas mais baixas, apresentam também maior resolução espacial, alcançando 30 metros, e trazem a bordo o sensor TM. As principais características orbitais destes satélites são: altitude de 705 km, inclinação de 98,20º, período de 98 minutos e resolução temporal de 16 dias.
As imagens orbitais possuem quatro características específicas que contribuem para a extração de informações para fins de discriminação dos objetos imageados; são elas: a resolução espectral, a resolução espacial, a resolução radiométrica e a resolução temporal; elas estão diretamente relacionadas à sensibilidade espectral, tamanho do objeto, intensidade da energia refletida ou emitida pelos objetos e frequência de imageamento, respectivamente.
As imagens adquiridas correspondem a matrizes de pixel em níveis de cinza, estes pixels são as menores partes das imagens e cujo tamanho é responsável por determinar a sua resolução espacial. Cada pixel representa as mesmas dimensões na superfície terrestre, portanto se o pixel mede 100 metros ele agrupa informações de uma variedade maior de elementos da superfície, contudo se o pixel tem 1 metro ele é capaz de distinguir pequenos detalhes, permitindo um resultado mais sensível aos objetos específicos na superfície. Além da resolução espacial, cada pixel contém valores de radiância medidos em cada banda das imagens multiespectrais. Estas bandas representam os intervalos do espectro eletromagnético sensíveis ao sensor e correspondem à resolução espectral da imagem, ou seja, se trata da largura do intervalo de comprimento de onda coberto em cada banda e por conseguinte ao número de bandas espectrais que os sensores conseguem discretizar.
Já a resolução radiométrica remete ao nível de cinza que representa a intensidade de energia eletromagnética média medida em bits pelo sensor para cada pixel da área imageada. Cada sensor possui um limite de tons de cinza que consegue detectar e armazenar. E, por fim, a resolução temporal corresponde ao tempo que o satélite leva para imagear a mesma área novamente.
Todas as imagens de satélite são contaminadas por ruídos ou distorções em virtude de interferências atmosféricas ou de reflexões do solo (ground clutter) no caso dos radares (CALHEIROS, ANTONIO e BRANGELI, 1995), que podem levar a confusões nas análises. Para evitar riscos erros é importante proceder etapas preliminares padronizando os dados e evitando desvios nos resultados.
A rigor, a radiação solar sofre vários processos de refração porque a concentração dos gases que compõem a atmosfera é bastante variada nas diferentes zonas e camadas […]. Além do processo de refração, certos gases constituintes, como o ozônio e o CO₂, absorvem a radiação solar em certos comprimentos de ondas. Essa absorção pode ser total, como é o caso da radiação ultravioleta (absorvida pelo ozônio), ou parcial, como ocorre em quase todo o espectro a partir de 0,3 μm […] Existem outros fatores complicadores, como partículas dispersas e presença de nuvens, que provocam o espalhamento da radiação.
As nuvens são a maior barreira à radiação solar, do ponto de vista do sensoriamento remoto, porque elas impedem a passagem da radiação solar na porção reflectiva do espectro eletromagnético onde operam a maioria dos sistemas sensores […] (MOREIRA, 2007, p. 36-37)
A análise de dados digitais acontece em quatro fases distintas: pré-processamento, transformação de dados digitais, classificação propriamente dita e pós-processamento. As técnicas preliminares que visam corrigir estas interferências ou minimizar seus efeitos sobre os dados consistem na etapa de pré-processamento. Esta etapa agrega um conjunto de técnicas implementadas para ajustar os dados numa forma de “tratamento preliminar de dados brutos, com a finalidade de calibrar a radiometria da imagem, atenuar os efeitos da atmosfera, remover ruídos, corrigir suas distorções geométricas, por meio de georreferenciamento e reamostragem.” (FLORENZANO, 2008, p. 42)
A eliminação de ruídos corresponde à faixa de cobertura sem registro de dados. Uma das técnicas de remoção de ruído consiste na substituição do valor zero da radiância pelo média dos pixels das linhas superior e inferior. O realce das imagens também é uma técnica de pré-processamento bastante utilizada sobretudo para os produtos que serão utilizados em interpretações visuais. O realce busca ampliar o contraste de feições na cena, a fim de melhorar a qualidade visual. Já a correção geométrica busca eliminar os erros propagados por movimento do satélite e pela curvatura da Terra. “Em outras palavras, a correção geométrica pode ser entendida como a transformação dos dados de sensoriamento remoto, de tal modo que eles adquiram as características de escala e projeção próprias de mapas (MATHER, 1987 apud MOREIRA, 2007, p. 275). A correção radiométrica de imagens “inclui tanto as operações puramente cosméticas dos dados, que visam apenas melhorar sua visualização, quanto aquelas que visam normalizar os dados radiometricamente, de modo absoluto ou relativo” (MOREIRA, 2007, p. 277)
Fonte: Exame de Qualificação Doutorado PPGMA-UERJ. Teixeira, 2018. A Lagoa de Itaipu: (re)conhecimento a partir de diálogos no mundo vivido